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STEP Mathematics 111 2011: Solutions

Section A: Pure Mathematics

1. 0] The differential equation can be solved either by separating variables or using
an integrating factor. In either case, [ (i—:i) dx , or the negative of it is required, and this can

be found either by re-writing (i—:i) as 1+ x_-lm or using the substitution, v = x + 1.

Thus the solutionis u = k(x + 1)e*.
(i) The substitution y = ze™* yields % =ze™ —ze™, and
dzy "_—x

—a=Ze —27'e™* + ze™~.

Substituting these expressions in the differential equation and simplifying gives

((x +1)z" — (x+ 2)z’)e‘x = 0 which is effectively the first order differential equation
from part (i) withu = z'.

So z' = k(x + 1)e*, which is an exact differential (or integration by parts could be used),
z=kxe*+candsoy = Ax + Be™ asrequired.

(iii)  Part (ii)’s substitution gives z"" — %z’ = (x + 1)e* which using the

integrating factor from part (i) gives %z’ = [ 1dx = x + ¢, and thus

y = (x? + 1) + Ax + Be™™. Alternatively, the solution to part (ii) is the complementary
function and a quadratic particular integral should be conjectured, which in view of the cf
need only be y = Cx? + D, yielding the same result.

2. As f (g) =0, qvif (g) = 0, which, when evaluated, gives every term but one to

be an integer, and so, that term, % , must be an integer, and as p and ¢ are integers with no

common factor greater than 1, this can only happen if g = 1, giving the required deduction.

Q) To show that the nth root of 2 is irrational, consider f(x) = x™ — 2, and evaluate
f(1) and f(2), then apply the stem of the question.

(i)  Considering the turning points of f(x) = x3 — x + 1, there can only be one real
root. Evaluating f(—2) and f(—1) and applying the stem gives the result.

(iii)  Considering the graphs of y = x™ and y = 5x — 7, for n > 3, that these cannot
intersect for x > 0 can be observed by noting their signs for 0 < x < 1-4, and their
gradients for x > 1-4. For x < 0, and = even, it is sufficient to consider signs, whereas
for n odd, it is enough to evaluate f(x) =x™ —-5x+7 for x =—-2,and x = —1or — 3,
depending on the case, and then applying the stem. The case n = 2, can be demonstrated by
completing the square and showing that there are no real roots.



Part (i) could be demonstrated by a minor variant to the usual proof for the irrationality of the
square root of 2. Parts (ii) and (iii) could be shown by applying the stem and then
considering the left hand side of each equation for the cases » even and » odd.

3. Considering the quadratic equation pt? — gt + p? = 0, the condition g2 # 4p3
shows, by considering the discriminant, that the roots are unequal. Supposing that

x3 — 3px + q can be written as a(x — )3 + b(x — )3, and equating coefficients
generates the four equations

a+b=1
—3aa—-36b=0
3a%a +3pB%b = —3p
—a3a—B3b=gq

The first pair may be solved simultaneously to give a = % and b = ﬁ .
Substitution yields p = a¢ff and q = aB(a + ) , or alternatively,
af=p and a+p =% and so o and A satisfy tz—%t+p =0 ie pt2—qt+p?=0.
For p=8, q=48,q>—4p3=28+0.
Hence a and S are the roots of 8t? — 48t + 64 =0,ie. t?—6t+8=0and
wlog a =2, f =4, a=2, b=-1.

N3
So x3 — 24x + 48 = 0 can be re-arranged as (x—_;l') =2

(2-32) 2(2-032) 2(2-02372)

1-32 ' 1-0¥2 T 1-w?32

— 2
As w3=1, i_—;: V2, w2, w?¥2 andso x =
If g =2r3 and p =1r?, q% = 4p3 so the first part cannot be used.
However, x3 — 3r2x + 2r3 = 0 can be readily factorised as (x — r)?(x + 2r) = 0 and so

x = r (repeated) or —2r

4, Q) foaf(x)dx is the area between the curve y = f(x), the x axis, and the line x = a
fob f~1(y)dy is the area between the curve y = f(x), the y axis, and the line y = b .

The sum of these areas is greater than or equal to the area of the rectangle, with equality
holding if b = f(a).

| r——

A
(i)  With (x) = xP~1, the sum of the two integrals is %ap + %bp—l



But as % + i =1, i = ijl , and so the required result follows by applying the result

of part (i).
If b =aP~1, simple algebra shows a = b971, so %ap + %bq = %ab + %ba = ab and
equality is verified.

(iii)  f(x) = sin x satisfies the conditions of part (i)
So foaf(x) dx = 1 — cosa, and, by parts, fobf_l(y)dy =bsin"'hb+V1—-b2-1
which together give the required result.

Choosing a =0,and b =t~ 1, part (i) gives 0 <t sin"*(t71) + V1 —t~2 — 1 which
can be re-arranged to give the required result.

5.
0 = 4 o Q)= 40 = (e
+

z)z x2 dt dt
X

and hence integrating gives the result.

Ais(x —acost,y —asint)and Bis (x + bcost,y + bsint)

[A] —f "(x — acost) (— — acos t) (y —asint) ( + asin t) dt using (*) which

leads directly to [A] = [P] — af + ma?

Replacing —a by b gives [B] = [P] + bf + mh?

As [A] = [B], these expressions can be equated to give f = m(a — b) .

The area between curves C and D is [A] — [P] = —af + ma? which by substitution gives
mab as required.

6. Using the substitution ¢ = tanh (5) then it can be shown that T = U , by making

use of 2sinh (g) cosh (2) = sinhu to obtain the integrand, and tanh™!¢ = —l (Ht) to
obtain the limits.
If instead, integration by parts is used differentiating tanh~! t and integrating % ,and

1
) to demonstrate that [tanh™'¢tIn¢t]?=0, T =V.

3

The substitution t = e~2* can be used to demonstrate that T = X .

1+t

employing tanh™¢ = %l (

(Alternatively, starting from U, the substitution u = 2 tanh™! ¢ obtains U =T , the
substitution u = —Inwv obtains U =V, and the substitution u = 2x followed by integration
by parts yields U = X ; starting from V, by parts it can be shown that V = T, using the
substitution v = e * that ¥V = U, and the substitution v = tanh x that VV = X ; or starting

from X, the substitution x = —%lnt gives X =T, integration by parts gives X = U , and
the substitution x = tanh™! v gives X =V )

7. (i) The induction requires T,y = Ay + Briz/ala+ 1) and
Agrr’ —ala+DBy,> =1 .

Tivz = (A + Bifala+ D) (Va + 1+ Va)© = (4 + Biala+ D)1y



T,=(2a+1+2/ala+1)) andso 4, =2a+1and B, =2, and
A* —a(a+1)B,% = (2a+ 1)? —a(a + 1)22 = 1 the result is true forn = 2.

Evaluating Tj.,, using (Ak + By+Ja(a + 1)) T, then Ag,, = (2a + 1)A; + 2a(a + 1)By,
and By,, = 24, + (2a + 1)By, , and so substituting and simplifying,
Apir” —ala + 1DBy,,? = A — a(a + 1)B,* = 1 by the induction.

(i) Ty=(a+1+Va)Ty =(Va+1+a)(An+Bnfala+1D)

= (4,, + aB,)Va + 1 + (4,, + (a + 1)B,)v/a which is of required form because
C, =A, +aB, and D, = A,, + (a + 1)B,, are integers and

(a +1)C,* —aD,? = (a+ 1)(Ap + aBp)? — a(4,, + (a + 1)By,)?

=A% —a(a+1)B,%* =1 as required.

Trivially the case n = 1 is true.

(iii)  Inthe case that n is even,

T, =A,+Byjala+1) = \/Anz + \/a(a +1)B,* = \/a(a + 1B, +1+ \/a(a + 1)B,*

as required,

and in the case that nis odd, T, = C,v/a + 1+ D,\a = \/(a +1)C,% + \/aDnZ =

\/aDnZ +1+ \/aDnz as required.

_ . 1+i(x+iy) 2x . x2-(1-y?) . .
8. w=utiv=r = oo T iy U9 the complex conjugate, so
_ 2x _ x%—(1-y?)
u= x%+(1+y)? and v = x%+(1+y)?

() fx=tanZ, y=0then u=sin6, and v =—cos, using the general
result and so u? + v? = 1 but the point 8 = 7 i.e. (0,1) is not included.

(i) If —1<x<1,and y =0 ,thenitisthe same locus as (i) except —g <0< g
and so it is the semi-circle that is the part of u? + v = 1 below the u axis.

@iii) x=0 ,thenu=0 andv = i—: ,and as —1 < y < 1 which is that part of the v

axis below the u axis, i.e. —0o < v < 0.

(iv) Letx=2tan§ and y=1,s0as —o<x <o, —mr<68<m,then

1. _1 . . 12 _ (1)?
u=-sinfand v=7(1 - cos8), so the locus is the circle u? + (v —5) = (5)

excluding the point © = 7, which is (0,1) .



Section B: Mechanics

9. For the initial equilibrium position, suppose 8 = a , considering potential energy,
with potential energy zero level at O, U = 4mgacos @ + 3mgasin@ + c, for

equilibrium, Z—Z =0,qgiving tana = %.
Then conserving energy,
4mgacos 0 + 3mgasinf + % 7m (aé)z = 4mga cos a + 3mga sina which having

substituted for a gives 7a (6?)2 + 8gcosf + 6gsinf = 10g

Q) Resolving radially in general for Q, if R is the contact force,
4mgcos6 — R = 4mab? ,sowhen 6 =B, R =0,andthus 4mgcosp = 4mabh?
and so substituting for 82 and @ in the energy result gives 15cosf + 6sin = 10.

(i) Resolving tangentlally for Q, 4mgsin® — T = 4maf and for P,
T — 3mg cos @ = 3maf so eliminating 6 between them and re-arranging,

T = 7mg(sm9 + cos @) as required.

10. Suppose Q is displaced x and P is displaced y, and let 1 = % maw?

then mi = M— and my = M
Adding and mtegratlng leads to x + y =ut.
Subtracting gives y — ¥ = —w? (y —x)andso y — x = % sin wt from solving the

differential equation and employing the initial conditions that when=0, x =y =0,x =0,
and y=u.
Thus, x = = (ut — Zsinw t) and y = = (ut + Zsinw t) . When the string next

2 w 2 w
returnsto lengtha, y —x = % sinwt=0, wt=mandso x =y = % % 7 as required.
Soatthistime, x =u,and y=0.
The total time between the impulse and the subsequent collision is g + % .

11.  On the one hand the distance between the point on the disc vertically below (a, 0,0)
and P is b sin ¢ as the string length b makes an angle ¢ with the vertical. On the other, it is

2a sin%@ , the third side of an isosceles triangle with two radii « at an angle 6 , and hence the

required result.
The horizontal component of the tension in each string is T sin ¢ and it acts at a

perpendicular distance a cos % 6 from the axis of symmetry. Thus the couple is
nT sing a cos%@ . Resolving vertically, n T cos¢ = mg . Substituting for 7 in the

expression for the couple and then using bsin¢ = 2a sin%@ to eliminate ¢ , gives the

required result.
The initial potential energy relative to the position where the strings are vertical is

mgb(1 — cos ¢p) . This is converted into kinetic energy % % ma? w? . Equating these

expressions and once again using bsin¢ = 2a sin%@ to eliminate ¢ , gives the required
result.



Section C:  Probability and Statistics

12 As Gy(t) = G(H()),G'y(®) = G'(H®) x H'(t),andasH(1) =1, H'(1) =
E(X;), G'(1) = E(N),and G'y (1) = E(Y), the first result follows.

similarly, 6"y (t) = G"(H(®) x (H'(®))* + ¢'(H(®)) x H'(t) , and

Var(Y) = 6"y(1) + 6'y(1) - (6'v(D)’

= ¢"(HD) x ( H'(D) + ¢'(HQ)) xH'(1) + E¥) — (EX))*

= (Var(N) +(EV))* —E(N)) x (EX))" + E(N) x (Var(Xi) + (Ex))" -

2
E(X)) + EQVN) E(X) — (EW) E(X))
= Var(N) x (E(X)* + E(N) x Var(X;) as required,
A fair coin tossed until a head appears is distributed Geo G) so G(t) = i . The PGF for

the number of heads when a fair coin is tossed once is % + %t . Thus Gy (t) = g .
@

P(Y =r), being the coefficient of t" in G, (t),is 3:% forr > 1, and %for r=0 .

13 0 P=n=(O) =) pa=r+n=( )T

n n r+1 n n
PX=r+1) _ k7 b The most probable value of X is the minimum value of  such
P(X=r) r+1n-b

k-r b . . .
that :IE < 1, because this expression decreases as r increases. All the factors are

2
Using the results E(Y) =2 X %: 1,and Var(Y) = X G) +2 X i =1.

and so

positive so it is simple to rearrange the algebra to obtain r > @b —1 sor= [% bJ :

. . . k-r b . .
The answer is not unique when there is a value of r such that ﬁ—b = 1, in which case,

=2 p , which will only happen if n divides (k + 1)b .

B)Gy)

r/\k—-r

n ’

o G

PX=r+1)= eyl andso 20D _ ko bor
(Z) ! P(X=r) r+1 n-b—(k-r)+1 "’

Again, the most probable value of X is the minimum value of  such that

k-r b-r .. _ | ke+1)(b+1) .. . . ..

v T—— <1,giving r = [—(n+2) J , and this is not unique if (n + 2) divides

(k +1)(b + 1).

(if) Using the same strategy as for part (i) , P(X = 1) =




